Thoughts on Eggert’s Conjecture
نویسندگان
چکیده
Eggert’s Conjecture says that if R is a finite-dimensional nilpotent commutative algebra over a perfect field F of characteristic p, and R(p) is the image of the p-th power map on R, then dimF R ≥ p dimF R(p). Whether this very elementary statement is true is not known. We examine heuristic evidence for this conjecture, versions of the conjecture that are not limited to positive characteristic and/or to commutative R, consequences the conjecture would have for semigroups, and examples that give equality in the conjectured inequality. We pose several related questions, and briefly survey the literature on the subject.
منابع مشابه
Eggert’s Conjecture on the Dimensions of Nilpotent Algebras
In 1971, Eggert [2] conjectured that for a finite commutative nilpotent algebra A over a field K of prime characteristic p > 0, dimA ≥ p dimA(p), where A(p) is the subalgebra of A generated by all the elements xp, x ∈ A and dimA, dimA(p) denote the dimensions of A and A(p) as vector spaces over K. In [3], Stack conjectures that dimA ≥ p dimA(p) is true for every finite dimensional nilpotent alg...
متن کاملOn some generalisations of Brown's conjecture
Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کامل$L^p$-Conjecture on Hypergroups
In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions for a weighted Lebesgue space $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$. Among the other things, we also show that if $K$ is a locally compact hyper...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کامل